

\section*{WIEAJHERGRAPH forecasting \\ | Planetary scale | $10,000+\mathrm{km}$ | General atmospheric circulation |
| :--- | :--- | :--- |
| Synoptic scale | $1,000-10,000 \mathrm{~km}$ | Frontal systems, synoptic highs and lows |
| Mesoscal | $10-1,000 \mathrm{~km}$ | Thunderstorms tropical cyclones |
| Miscoscale | $1-10 \mathrm{~km}$ | Clouds, tornacoes, mountain waves | \\ TROPICAL SYSTEMS \\ | assification | | Sustained wind spee | |
| :---: | :---: | :---: | :---: |
| | | Knots | |
| tropical disturbance | | 33 or less | 38 or less |
| TROPICAL DEPRESSION* | | 33 or less | 38 or less |
| TROPICAL STORM | | 34-63 | 39-73 |
| HURRICANEITYPHOON | | 64 or more | 74 or more |
| MAJOR HURRICANE** | | 96 or more | 110 or more |
| SUPERTYPHOON** | | 130 or more | 149 or more |
| * Has a closed circulation** Designation is nonstandard or may apply regionally | | | |
| TROPICAL CYCLONE REQUIREMENTS | | | |
| - Sea surface temperatures in excess of 80 deg F over large open ocean areas.
 - Coriolis effect, equal to that at 5 degrees latitude or greater | | | |
| - Weak vertical wind shear; preferably below 20 kts shear from 850 to 200 mb | | | |
| EASterly waves | | | |
| A migratory disturbance in the tropical easterlies that moves westward. They are most common in the Atlantic basin and may evolve into tropical cyclones. Easterly waves are usually stable but may be one of the following: | | | |
| | | | |
| waves are usually stable bu | Precipitation | Slope w/ height | Wnd spd w/ height |
| Stable \quad W | West of wave | Eastward | Decreases |
| Neutral At | At wave | Little if any | Little change |
| Unstable Ea | East of wave | Westward | Increases |

SAFFIR-SIMPSON HURRICANE SCALE

Cat 1 - Minimal damage
Pressure $>980 \mathrm{mb}$ (>28.92"); winds $74-95 \mathrm{mph}$; storm surge $4-5 \mathrm{ft}$ Damage primarily to shrubbery, trees, foliage, and unanchored mobile homes. No real damage to other structures. Some damage to poorly-constructed signs. Low-lying exposed anchorage.
Cat 2 - Moderate damag
Pressure $965-979 \mathrm{mb}$ (28.49-28.92"): winds $96-110 \mathrm{mph}$; storm surge 6-8 ft. Considerable damage to shrubbery and tree foliage; some trees blown down. Majo Some tam exposed mobile homes. Extensive damage to poorly-constructed signs. Some damage to rooting materials on buildings; some window and door damage. No
major damage to buildings. Coastal roads and low-lying escape routes are cut by major damage to buildings. Coastal roads and low-lying escape routes are cut by
rising water two to tour hours before the arrival of the storm. Considerable damage rising water two to four hours before the arrival of the storm. Considerable damage to
piers. Small craft torn from mooring.
Cat 3 - Extensive damage
Pressure $945-964 \mathrm{mb}$ ($27.90-28.48^{\prime \prime}$) winds $111-130 \mathrm{mph}$; storm surge $9-12$ ti Foliage torn from trees. Large trees and signs blown down. Some structural damage to small buildings. Mobile homes destroyed. Serious flooding at coast. Large
structures near coast damaged by battering waves structures near coast damaged by battering waves and floating debris. Low-lyin escape routes cut by rising water three to five hours before storm arrives.

Cat 4-Extreme damage
Pressure $920-944 \mathrm{mb}$ ($27.17-27.89$ "); winds $131-155 \mathrm{mph}$; storm surge $13-18 \mathrm{ft}$
Numerous trees blown down. Extensive damage to roofing materials. Complete Numerous trees blown down. Extensive damage to roofing materials. Complete
failure of roofs on many small residences. Flat terrain is submerged ten feet or less failure of roots on many small residences. Flat terrain is submerged ten feet or less
above sea level as far as six miles inland. Major damage to lower floors of structure near shore due to battering by waves and floating debris. Major erosion of beaches
Cat 5 - Catastrophic damage
Pressure $<920 \mathrm{mb}$ (<27.17"); winds $>155 \mathrm{mph}$; storm surge $>18 \mathrm{ft}$ Considerable damage to buildings. Major damage to lower floors of all coastal structures less than 15 feet above sea level and within 500 yards of shore turbulence are: Tts per 1000 ft

TURBULENCE
Using the 300,250 , and 200 mb charts, some Regions just poleward Horizontal wind shear of Hor kts per 150 nm Vertical wind shear of 6

$5+\operatorname{deg} \mathrm{C}$ per 120 nm

Winds of $135+\mathrm{kts}$ in
strong anticyclonic flow

WEATHER SYSTEM CATEGORIES

PROGGING RULES

A major short wave trough moving \mathbf{A} into \mathbf{B} out of a long wave trough \mathbf{A} deepens \mathbf{B} fills the long wave trough,
A major short wave ridge moving \mathbf{A} into \mathbf{B} out of a long wave ridge \mathbf{A} builds \mathbf{B} weakens the long wave ridge
A major short wave ridge moving \mathbf{A} into \mathbf{B} out of a long wave ridge \mathbf{A} builds \mathbf{B} weakens the long wave ridge.
A jet streak moving \mathbf{A} toward \mathbf{B} through \mathbf{C} away from the axis of a long wave trough will cause it to \mathbf{A} deepen and remain quasistationary B progress C fill and progress more rapidly.
$\square \mathbf{A}$ jet streak moving \mathbf{A} toward \mathbf{B} through \mathbf{C} away from the axis of a long wave ridge will cause it to \mathbf{A} build and remain quas stationary \mathbf{B} progress \mathbf{C} weaken and progress more rapidly.
An upper trough oriented NW-SE has negative tilt and tends to deepen; one oriented NE-SW has positive tilt and tends to fill. The stronger the westerly component of the upper-level wind, the faster the wave moves
Cold air advection deepens upper-level troughs and weakens upper-level ridges.
Warm air advection builds upper-level ridges and fills upper-level troughs.
Moisture in a parcel may increase due to these factors: upper divergence, warm air advection, frontal lift, orographic lift, boundaryayer convergence, colder air moving over a warmer surface, advection over a new moisture source, and on-shore flow.
Moisture in a parcel may decrease due to these factors: upper convergence, cold air advection adial
over a cold surface, and offshore flow.
Cold fronts will move at roughly 85% of the 850 mb flow in the cold air behind the cold front.
Cold fronts will move at roughl 85% of the 850 mb flow in the cold air benind the cold front.
Warm fronts will move at roughly 70% of the 850 mb flow in the cold air ahead of the warm front.
a Dynamic lows tend to have a surface motion of 70% of the 700 mb flow or 50% of the 500 mb flow.

FORECAST MODEL OVERVIEW

	Forecast Model				Horz	Vert NWS	
Name	Full Name	Domain	Type	Grid Size	Resolutn	Lyrs Implem	Notes
LFM	Limited-area Fine Mesh	N. Amer.	Grid	53×57	190 km	71971	Discontinued
LFM II	Limited-area Fine Mesh	N. Amer.	Grid	53×45	127 km	161977	Discontinued
NGM	Nested Grid Model	N Amer.	Grid	Nested	90 km	161985	
GSM	Global Spectral Model	Global	Spectral	126 waves	100 km	281980	Is also AVN (to 72h) and MRF (to 360h)
ETA	Eta (greek letter)	N. Amer.	Grid	N/A	80 km	381993	
ETA	Eta (greek letter)	N. Amer.	Grid	N/A	48 km	381995	
ETA	Eta (greek letter)	N Amer.	Grid	N/A	32 km	$45-$	Experimental
ETA	Mesoscale Eta	U.S./Can	Grid	N/A	29 km		Experimental
RUC1	Rapid Update Cycle	U.S.	Grid	81×62	60 km	251994	Discontinued
RUC2	Rapid Update Cycle	N. Amer	Grid	151×113	40 km		Model is assimilated every hour

WINTER PRECIPITATION GUIDELINES

